Learning the lessons through evaluation and research, a story of variety in scope, approach and application.

Synthesis of evaluation approaches from the Transforming Curriculum Delivery through Technology Programme.

May 2011

For

JISC

Dr Rachel A Harris

Inspire Research Ltd
Glasgow, G14 9PE

Phone: 07779 980333
Email: info@inspire-research.co.uk
Web: www.inspire-research.co.uk

Research to Inspire
:: learning :: imagination :: creativity :: innovation :: collaboration :: change ::
Contents

1 INTRODUCTION .. 4
 1.1 OVERVIEW OF THE PROJECTS ... 4
 1.2 DRIVERS FOR EVALUATION OR WHY EVALUATE? ... 6
 1.3 PLANNING FOR IMPROVEMENT AND THE EVALUATION PROCESS 8
 1.3.1 An evaluation cycle based in action research .. 9

2 EVALUATION APPROACHES ... 10
 2.1 ACTION RESEARCH .. 10
 2.2 APPRECIATIVE INQUIRY ... 11
 2.3 BALANCED SCORECARD ... 12
 2.4 FORMATIVE EVALUATION .. 12
 2.5 FORMATIVE EVALUATION BUILT AROUND ‘MEASURES OF SUCCESS’ 13
 2.6 INDEPENDENT EXTERNAL EVALUATOR ... 13
 2.7 INDEPENDENT INTERNAL EVALUATOR ... 14
 2.8 MAKING USE OF MICRO AND MACRO DATA SOURCES 15
 2.9 RICH QUALITATIVE METHODS .. 16

3 BASELINE ACTIVITY AND HOW IT WAS USED ... 17
 3.1 WHAT IS A BASELINE? ... 17
 3.2 IDENTIFYING THE CURRENT CONTEXT .. 17
 3.3 IDENTIFYING EXISTING PRACTICE .. 18
 3.4 MAPPING THE LANDSCAPE .. 18
 3.5 A FIRST SET OF EVALUATION DATA ... 19
 3.6 INFORMING DEVELOPMENTS AND DESCRIBING THE STARTING POINT 19
 3.7 REPORTING ON THE JOURNEY .. 19

4 DATA COLLECTION TECHNIQUES .. 21
 4.1 COGNITIVE MAPPING ... 21
 4.2 FOCUS GROUPS .. 22
 4.3 INFORMAL DISCUSSIONS .. 22
 4.4 INTERVIEWS ... 22
 4.5 MEASURES OF TIME (EFFORT) ... 22
 4.6 QUESTIONNAIRES ... 23
 4.7 STUDENTS AS AGENTS OF CHANGE AND RESEARCHERS 24

5 APPROACHES TO ANALYSIS .. 25
 5.1 QUALITATIVE ANALYSIS .. 25
 5.2 CASE STUDIES ... 25
 5.3 COST BENEFIT ANALYSIS .. 26
 5.4 SOCIAL NETWORK ANALYSIS ... 26
 5.5 WORD CLOUDS .. 27

6 LESSONS LEARNED ... 29
 6.1 DISSEMINATION CAN LEAD TO FURTHER SUCCESS 29
 6.2 EVIDENCE OF IMPACT – THE VALUE OF VIDEO ... 29
 6.3 GATHERING FEEDBACK FROM STUDENTS – ISSUES AND TIPS 30
1 Introduction

The Transforming Curriculum Delivery Through Technology Programme invited institutions to “transform how they deliver and support learning across a curriculum area through the effective use of technology” (JISC, 2008)\(^1\). The programme also had a strong focus on gathering and making effective use of evidence. This was intended to inform the fifteen funded projects during their lifetime, but also to provide evidence to the wider sector of the potential benefits of using technology to support learning.

Projects started the evaluation process by reviewing the current context and gathering baseline data. This baselining was about scoping and checking understanding, so as to clarify challenges that could be addressed during projects, but also to acknowledge possible risks. For some, it provided a first set of evaluation data. The baseline was also used to inform the development of evaluation plans.

In designing their evaluation, projects were encouraged to think ahead to the kinds of impact they would like to achieve, to use these to derive potential ‘measures of success’, and then consider what would make credible evidence of impact. The perspective of different stakeholders was envisioned as part of this process.

Approaches to evaluation that were employed by individual projects included adapting appreciative inquiry, approaches grounded in action research, engaging an independent evaluator, as well as using traditional formative evaluation methods. Project teams also made use of a wide variety of the standard data collection methods including focus groups, interviews, observation and questionnaires. Technology was employed to support this, with many projects undertaking video interviews that were later compiled and made available on the web. All projects were given a Flip\(^\text{TM}\) camera at the start of programme. Many made use of these to capture stakeholders’ views, collect other evidence, or to reflect on progress. The more unusual methods included time motion studies, which were used to forecast efficiency savings; cognitive mapping; and social network analysis. Projects also found innovative ways of engaging with students such as employing them as researchers.

This report provides an overview of how the Curriculum Delivery projects set out to generate and gather evidence, the variety of approaches and techniques that were employed, and some of the lessons learned along the way.

1.1 Overview of the projects

A total of 15 projects were funded (13 via JISC funding and two from Becta funding) in the Transforming Curriculum Delivery Through Technology Programme. An overview of the projects is provided in Table A, including project acronyms and links to project’s individual pages on the Programme’s Design Studio\(^2\).

\(^1\) Links to the original call and the details of all funded projects and outputs are available here http://www.jisc.ac.uk/whatwedo/programmes/elearning/curriculumdelivery.aspx

\(^2\) The Design Studio draws together existing and emergent resources around curriculum design and delivery and the role technology plays in supporting these. See http://jiscdesignstudio.pbworks.com/
<table>
<thead>
<tr>
<th>Project</th>
<th>Institution and Project Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atelier-D</td>
<td>Open University</td>
</tr>
<tr>
<td>Achieving Transformation, Enhanced Learning & Innovation through Educational Resources in Design</td>
<td>Investigated web technologies for developing a virtual design studio space to support student learning throughout the Design programme of the Open University.</td>
</tr>
<tr>
<td>CASCADE</td>
<td>University of Oxford</td>
</tr>
<tr>
<td>Coventry Online Writing Laboratory</td>
<td>Implemented new strategies to improve curriculum delivery models to allow the University of Oxford’s Department for Continuing Education to respond more flexibly to stakeholders’ needs.</td>
</tr>
<tr>
<td>COWL</td>
<td>Coventry University</td>
</tr>
<tr>
<td>Dynamics Online Writing Laboratory</td>
<td>Developed and extended the pedagogy, reach and diversity of academic writing services, through a technology-enhanced teaching and learning environment.</td>
</tr>
<tr>
<td>DUCKLING</td>
<td>University of Leicester</td>
</tr>
<tr>
<td>Delivering University Curricula: Knowledge, Learning & Innovation Gains</td>
<td>Developed delivery, presentation and assessment processes to enhance the work-based learning experience of students studying remotely.</td>
</tr>
<tr>
<td>Dynamic Learning Maps</td>
<td>Newcastle University</td>
</tr>
<tr>
<td>Navigable Learning Maps were developed to assist students and staff in actively mapping learning by drawing on formal curricular and personalised learning records, supported by facilities to add and rate resources, and tools to support discussion and reflection.</td>
<td></td>
</tr>
<tr>
<td>eBioLabs</td>
<td>University of Bristol</td>
</tr>
<tr>
<td>Developed a set of integrated tools that help students prepare for laboratory classes and help staff track student achievement.</td>
<td></td>
</tr>
<tr>
<td>ESCAPE</td>
<td>University of Hertfordshire</td>
</tr>
<tr>
<td>Effecting Sustainable Change in Assessment Practice & Experience</td>
<td>Responding to National and Institutional concerns regarding assessment and feedback, the project worked with two Schools to develop assessment for learning activities to enhance the assessment experience for learners and staff.</td>
</tr>
<tr>
<td>Generation 4 (G4)</td>
<td>St George's, University of London</td>
</tr>
<tr>
<td>Used recently developed technologies to assist in the creation of a more interactive and integrated model for case-based medical curriculum.</td>
<td></td>
</tr>
<tr>
<td>ISCC</td>
<td>Middlesex University and City University</td>
</tr>
<tr>
<td>Information Spaces for Creative Conversations</td>
<td>Addressed a recurrent problem in design education of students sometimes being disengaged from key creative conversations, a problem that can be exacerbated by learning technologies.</td>
</tr>
<tr>
<td>Integrate</td>
<td>University of Exeter</td>
</tr>
<tr>
<td>Integrative technologies project</td>
<td>Addressed the educational challenges faced by the University of Exeter's Business School as it entered a phase of considerable student expansion and international diversification.</td>
</tr>
<tr>
<td>KUBE</td>
<td>Kingston College</td>
</tr>
<tr>
<td>Kingston Uplift for Business Education</td>
<td>Set out to enhance the learning experience of students studying on higher-level business education programmes delivered at Kingston College on behalf of Kingston University.</td>
</tr>
</tbody>
</table>
1.2 Drivers for evaluation or Why evaluate?

As noted above, the programme had a strong focus on gathering and making effective use of evidence, but undertaking any form of evaluation has an inherent cost. So, why evaluate? For this programme, the main driver for evaluation could have been seen as learning. Focusing evaluation on knowledge or lessons learned is about identifying “what can be learned from this program’s experiences and results to inform future efforts” (Patton, 1997). In relation to transformative e-learning programmes, Draper and Nicol (2006) suggest that funded projects can add value by generating evidence. This can provide a “powerful lever in changing others’ behaviour by having changed their knowledge of what is possible and effective”. The focus on evaluation (and research) within the Curriculum Delivery programme thus supported a wider drive for ‘powerful levers’ or “evidence for ‘what works?’” (Sharpe, 2011).

This lessons learned or evidence of what works approach operated at several levels. At the departmental or school level, evidence gathered by projects could be used to support the case for taking project interventions forward. For example, the Cascade project noted “These efficiency savings, and our ability to quantify them, have been useful when we have needed to make the case to fully embed and sustain these services going forward”. The same potentially applies at the institutional level, but has wider implications as evidence can be used to encourage others. As noted in the final external evaluation report on the DUCKLING project:

“…the new delivery models implemented have been systematically evaluated. As a result, there is robust evidence and lessons learnt from the project that evidence positive impact to the learner experience and efficiencies in programme delivery that will prove invaluable to the University when trying

Clearly, the JISC programme team has and will continue to inform others at a national level regarding the evidence gathered by projects in the Transforming Curriculum Delivery Through Technology Programme. For example, the programme synthesis report\(^7\) includes a substantial overview of the benefits and evidence reported by projects.

At the project level, undertaking baseline and evaluation activity was also intended to inform the fifteen funded projects themselves during their lifetime. By evaluating their own interventions, projects were able to identify whether innovations were having a positive influence, if some form of modification was required, or if it just did not work. As many projects took an iterative approach to designing and developing curriculum delivery interventions, evaluation findings could be fed back, and aims clarified as the project progressed. There was also scope to investigate why, to understand the causes behind why an intervention did or did not work. Further by building evaluation in from the start, evidence was collected along the way to better enable investigation of early outcomes and impact.

Stakeholder involvement was strongly encouraged, and including a wide range of stakeholders at the baseline stage meant that they had the opportunity to express their needs to project teams, but also to later feedback in a systematic and recognised manner. For example, eBiolabs found students to be “the best quality controllers. Give them every opportunity to feedback and report where improvements can be made.”

While it was not explicitly stated, another programme level driver was perhaps to build evaluation capacity within project teams. Undertaking the evaluation themselves, something that was new to many, essentially gave teams a crash course!

Overall for this programme, the answer to the question ‘why evaluate’ might be to:
- inform the design and ongoing development of project’s interventions regarding the use of technology to support curriculum delivery;
- build evaluation capacity within project teams;
- give stakeholders the opportunity to express their needs and feedback in a systematic and recognised manner;
- provide evidence to support the case for embedding and sustaining project interventions locally;
- generate evidence of what works (and what does not) to inform the wider sector.

The following section outlines how evaluation might be built in to project processes.

http://www.jisc.ac.uk/media/documents/programmes/curriculumdelivery/curriculumdeliveryfinalreport.pdf (See Appendix 2)
1.3 Planning for improvement and the evaluation process

Early on in the Transforming Curriculum Delivery Through Technology Programme, projects took part in an evaluation workshop. During the workshop, project teams were asked to consider the following questions:

- What is your project trying to accomplish?
- How will you know that a change is an improvement?
- What changes can be made that will lead to the improvements you want?

For some projects, the answers were already outlined in draft project plans. The first question would be addressed in projects’ aims and objectives, and the second expressed in terms of expected outcomes. The final question provided a check on a project’s logic, i.e. whether the planned activities or tasks related to the project objectives and aims, but also whether planned activities would be feasible.

One approach of planning for improvement or testing out change is the Plan-Do-Study-Act cycle (PDSA) or Plan-Do-Check-Act cycle. This involves planning the change, trying or doing it, observing or studying the results, and acting on what is learned. It is very much an iterative process. This cycle is built on the work of Shewhart and Deming, and in combination with the questions listed above is known as the Model for Improvement. While PDSA is perhaps better known in healthcare settings, it does provide a fairly simple model that relates well to the JISC Development cycle described at the start of the programme, and shown against the PDSA model in Figure 1.

Figure 1 – Basic version of the PDSA cycle, overlaid with JISC Development cycle.

This kind of iterative approach also has strong parallels with action research cycles. Indeed, several projects highlighted that their approach to evaluation drew from Action research. This is perhaps not surprising given that one of the features of action

research is that it is “self-evaluative – modifications are continuously evaluated within the ongoing situation, the ultimate objective being to improve practice in some way or other” (Cohen & Manion, 1994)\(^{10}\).

1.3.1 An evaluation cycle based in action research

Within the programme, a typical evaluation cycle might start with the planning process by ‘observing’ via a baseline study involving staff, students and other stakeholders. This could involve surveys, interviews or other methods of identifying current context and practice relating to the challenges of curriculum delivery. Project teams would then ‘reflect’ by analysing baseline findings to refine project aims and evaluation plans, as well as recognising potential risks. Crucially, the baseline would also inform the next stage of developing or piloting changes to curriculum delivery. (The ‘action’ stage of action research.) The changes or actions would be ‘evaluated’ by gathering feedback from stakeholders and seeking other forms of evidence in line with the evaluation plan but also remaining alert for potential unintended outcomes. The findings from this stage could again be fed back to course teams and others involved in piloting to inform any further ‘modifications’.

Data collected during piloting may also be used as evidence to demonstrate the impact or outcomes from the project, although some outcomes may only become apparent in the longer-term. While evaluation findings would have been shared throughout the project, at least with the primary stakeholders, a final stage would be to disseminate the outcomes more widely.

The Six Steps to Effective Evaluation Handbook\(^{11}\) was commissioned by JISC, and while the steps are not modelled as cyclical, the different elements are reflected in the evaluations undertaken by the Transforming Curriculum Delivery projects. The Handbook also includes a range of templates and checklists that other projects involved in planning evaluations may find useful.

2 Evaluation approaches

A wide variety of approaches to evaluation were applied by projects. For some the evaluation was driven by a particular theory, others applied specific tools, some engaged experienced evaluators and others undertook the evaluation themselves. The following section outlines some of these approaches and provides links to further detail either in the published literature or where projects have provided more information on their websites or elsewhere.

2.1 Action research

As noted above, a number of projects adopted an approach based in action research. This section highlights some of these. The KUBE project was very much about flexibility. This was needed to enable change in direction where new technologies or techniques for learner engagement were identified by the team, but also to ensure compliance with quality demands. The team thus felt that their approach to evaluation should be based in action research, and they used an iterative process of implement, trial, feedback, reflect, modify and implement.

Atelier-D introduced a number of different technologies to a range of course modules within the Open University. In Year 1 of the project, the potential of six different web-technologies for supporting learning and teaching in design were explored. These Course Delivery Innovations (CDIs) were evaluated independently using a variety of approaches to data collection, including user surveys, data drawn from group discussions online, reflections from participant observers, and logs from the OpenDesignStudio. Atelier-D chose to use action research for the CDIs, as they saw it as useful for understanding “the effects of implementing a new initiative or technology where one is uncertain how effective it might be”. The team also considered the ‘action’ of implementing new technologies, to be part of the research process of better understanding practice in design teaching and learning. Overviews of the findings from the individual CDIs are available. (This is the report on CDI 3 – Conferencing to Support Collaborative Group Work.) In Year 2, the findings from the CDIs were used to inform the development of three Programme Delivery Innovations (PDIs).

As noted below, the DUCKLING project treated the ‘evaluation’ of the project’s processes separately from the ‘research’ into enhancing student learning via technology-enhanced delivery. For the latter, an action research methodology was applied involving McNiff and Whitehead’s (2006) ‘action-reflection cycle’12. (The cycle starts with observe and moves through reflect, act, evaluate, and modify and then to move in new directions.) For DUCKLING, the cycle started by ‘observing’ via a baseline study of staff, students and employers from both disciplines involved in the project. This was conducted using surveys and interviews and addressed the challenges of course delivery. The team ‘reflected’ by analysing the results of the baseline and feeding these back to course teams to inform the course redesign. The

‘action’ involved integrating four technologies into the redesign. This was subsequently ‘evaluated’ by gathering feedback from students and staff, analysing the findings and feeding this back to the course teams to inform any further ‘modifications’.

2.2 Appreciative Inquiry

The ESCAPE project used an Appreciative Inquiry (AI) approach with their module teams. AI focuses on current good practice and involves four sequential stages. The ESCAPE team describe the four AI stages as:

- **Inquire** – determine the area for study and establish good features of current practice.
- **Imagine** – invite visions for the future and open up opportunities for sharing the vision amongst the participants engaged in the process.
- **Innovate** – start to identify opportunities for meeting the shared vision.
- **Implementation** – put the innovations into practice.

AI was used to encourage module teams to reflect on their current practice, explore the consequences of these practices on the student assessment experience, identify current strengths and build on these as they looked to re-engineer assessment.

As part of the baselining process, individuals from the module teams took part in AI interviews. This helped to build a relationship with course teams and provided insights into the module’s teaching, learning and assessment practices, as well as highlighting other influences on the module. The AI interviews were then used to compile initial module case studies, which were circulated to module teams for comment. The case studies included commentary on teaching and assessment activity, thus providing a picture of pre-ESCAPE activity. By reflecting on current good practice, the AI interviews also served to enhance the working relationship between the module and ESCAPE teams by fostering a shared understanding of the challenges of the project.

The interviews were followed by a two-day, off-site event that was intended to support module teams in moving through the Imagine and Innovate phases of the AI cycle. Among other activities, Fishbone analysis was used to help module teams envision their end goal, and identify what they would have to have in place to make the goal happen. The required resources and actions were then mapped out in a time line. The outcomes of the Fishbone analysis could also be used during the lifetime of a project by reviewing progress against the identified resources and actions.

13 The Appreciative Inquiry Commons contains a wide range of resources on this approach. See http://appreciativeinquiry.case.edu/

By the end of the ESCAPE project, the team felt that Appreciative Inquiry was a valuable approach for engaging staff and enabling them to ‘grow their existing good work’. The adoption of the AI approach meant that the ownership of the change process lay with the module teams – the changes were not imposed. It does, however, take time, and others using the approach should be prepared that staff may want to unburden themselves and relate all their issues. Patience is required, and stakeholders may need reminding to reflect on what works too.

2.3 Balanced Scorecard

The COWL project made use Kaplan and Norton’s (1992)\(^{17}\) **Balanced Scorecard** within their evaluation. The team describe the Balanced Scorecard (BSC) as a “strategic management tool that encourages the connectedness of key organisational elements through the exploration of cause-and-effect relationships”. The BSC demonstrated the complex position of the project, and helped the team to focus on different stakeholders’ perspectives, internal and external processes, staff development, and budgets. The [COWL final report](#) includes a diagram of the project’s Balanced Scorecard (see Figure 4).

The BSC framework was useful in that it provided a check for the steering group to keep the project’s priorities in balance during its lifetime. The team did not use the tool to quantify their perceptions of the balance between topics on the scorecard, rather as a prompt to articulate and explore these perceptions. (A forthcoming article\(^{18}\) provides more detail on the use of BSC by the COWL evaluation team.)

2.4 Formative evaluation

MAC used an iterative approach to evaluation that was very much about informing the project. This **formative evaluation** questioned different aspects of the MAC pilots of the e-Reflect process including

- training and support;
- systems (e.g. usability, easy of access);
- stakeholder perceptions (e.g. expectations, usefulness);
- more summative questions relating to impact and changes to practice (e.g. the student focus - does this approach encourage it and is it well received).

Impact on the wider context of implementing e-Reflect was also evaluated. A strand of the evaluation also looked at the extent the project’s aims and objectives were achieved, addressing the perhaps more traditional view of evaluation. The approach is mapped out in an evaluation table presented in the [MAC evaluation plan](#).

The pilot of the MAC process (named after the reflective questionnaire component of the process and known as e-Reflect 1.0) started towards the end of January 2009 and involved approximately 70 students and 10 academic staff tutors. The wider rollout phase began in 2009/2010, when e-Reflect 2.0 was introduced to all new

undergraduate students in the School of Life Sciences (approximately 400 students). The intention was to use the MAC process with all assignments submitted (and returned with feedback) by students across the year. All 35 undergraduate personal tutors took part in the scheme. By the end of semester 1 some 311 students had used the system.

The evaluation of the pilot and wider rollout used mainly questionnaires (to staff and students) linked to focus group meetings and 1:1 video recorded interviews with students and staff. This continual or iterative approach to evaluation meant suggestions were passed back to the project team, highlighting tweaks that should be made to the e-Reflect process as the project progressed.

2.5 Formative evaluation built around ‘measures of success’

The Evaluation Plan for the Making the New Diploma a Success project initially focused on the effect of using the Learner Portal (eME) to deliver the new Diploma qualification to two groups of students in terms of teaching, learning and support. Barriers to the evaluation were encountered, related to the nature and delivery of the qualification and difficulties in engaging external stakeholders. The evaluation was thus revised to include additional curriculum areas. This brought in Work Related Learners, Creative Media and BTEC Diploma students, as well Foundation Studies students who were participating in a Lewisham College project on the use of eME.

The evaluation started with baseline data collection in Spring 2009 to identify how and from where students accessed the existing Virtual Learning Environment (VLE), as well as how they submitted course work. Tutors and support staff were also interviewed. A full Baseline evaluation report is available. As well as keeping a blog on the evaluation process, the project evaluator gave a short presentation of the baseline findings to the course teams. Interim evaluation data was gathered in March 2010, derived from student discussion forums, interviews with tutors and questionnaires issued to two groups of students. The final evaluation data was drawn from interviews with tutors and students, electronic questionnaires and statistics obtained from the reporting system offered by the new VLE (which is the platform for eME).

Seven evaluation factors were identified, and these were closely mapped to the project outcomes. The evaluation findings are usefully organised in the Final evaluation report against these seven factors. The report also includes a section on ‘Unanticipated outcomes’. Each factor is reviewed in terms of the measures of success that were identified by the project team following the baseline stage. These measures of success can be seen as indicators of the extent that the given feature ‘works’. The report then goes on to describe the benefit provided by these features, illustrating these with evidence gathered during the evaluation, including quotes from students. Thus the changes brought about by the project, and the benefits of these were evaluated.

2.6 Independent external evaluator

DUCKLING made use of an independent, external evaluator, although in a different manner to Cascade, which engaged an internal evaluator, see below. For
Duckling, the evaluation of project processes was undertaken completely independently from other investigative research into project outcomes and impact. This separation of ‘evaluation’ and ‘research’ is an approach that was not seen in many other projects, (although the principles of action research used by DUCKLING were applied elsewhere). It may be best suited to project teams who wish to focus on understanding the outcomes and impact, and have the expertise and resource available to devote to more in-depth methodological approaches.

The external evaluation of DUCKLING was structured around the three central questions defined in the Curriculum Delivery and Design Programme Level Evaluation Framework:

- What have we done/built/achieved, to what quality, and how efficiently?
- What has been learned or confirmed through development activities?
- How has the learning been acted on or fed back in?

This external evaluation also reviewed the extent that the project’s aims and objectives were met and that intended outcomes and outputs were achieved, as well as looking at how learning from the project was shared.

The external evaluator applied the following methods:

- Structured interviews with the Project Team and Programme Delivery Teams
- Structured telephone interviews with students
- Documentation Review, including the project website, Project Plan, Interim and Final Reports for JISC, DUCKLING Research Reports, Steering Group Meeting Minutes, and Benchmarking Reports

Three interim evaluation reviews were conducted during the life of the project, which reported on progress and gave recommendations to help inform project planning. These reports fed into Duckling’s Final External Evaluation Report.

2.7 Independent internal evaluator

Cascade engaged an independent, internal evaluator to work with the team in the second year of the project. This had the advantage of bringing in expertise and evaluation skills that the team would not otherwise have had. As the evaluator worked with the team, rather than entirely independently, it meant the evaluation was strongly integrated with the project. Being a member of staff also meant the evaluator was able to access data that might have been deemed too sensitive to share with an external evaluator.

The evaluator first devised an Evaluation Plan for Cascade, with evaluation questions, activities, and data-collection methods, and defined measures of success. This was developed after reviewing project documents, such as the JISC call, and project plan, and meeting with the project team. Two days were spent identifying aims and key measures of success for the Cascade focus areas.

The relationship of project aims to focus areas and from there the evaluation areas is shown in Figure 2. This demonstrates how the project aims were used as the starting point for the Cascade evaluation.
The second step was to take a snapshot of the initial status of the project to establish a baseline, with the goal of providing a sound basis from which to later evaluate the success of the project. The evaluator collected evidence for the Cascade baseline that addressed the five focus areas for the project. This was shared in a Baseline Report.

Following the various interventions made by Cascade, further evidence was collected from various data sources and via meetings with stakeholders. The evaluator also ran an evaluation workshop with the project team in November 2010 to review what had been learned and the impact of Cascade.

The evaluation journey was completed in the form of the Cascade Evaluation Report, which summarised the evaluation findings, and compared the baseline to data collected later on in the project. The reported was structured around the Cascade focus and evaluation areas, but crucially also linked each area back to the core project aims.

2.8 Making use of micro and macro data sources

Springboard TV set out to address the challenges of recruitment, learner satisfaction, engagement, progression and employability. Data from multiple sources pointed to learners taking a passive role, evidenced locally by poor attendance, inadequate time management, inability to meet deadlines, and incomplete projects. This was also reflected in declining student recruitment, the low levels of student satisfaction reported in the student surveys undertaken as part of the College’s QA processes, and differences in retention and achievement compared to national figures.

Data from multiple levels were also used to demonstrate the impact of Springboard TV on the key challenges. Students were surveyed at two time points, with questions that addressed their expectations of the programme and future aspirations. In relation
to the latter, the impact of Springboard TV was such that there were fewer students who did not know what they wanted to do, and more who wished to progress to HE. While the project’s influence on student engagement was reviewed in terms of course work extension requests and final assignment completion times. At the College level, evidence was drawn from the numbers of applicants to media courses, with an upward trend over the three-years from 08/09 to 10/11.

2.9 Rich qualitative methods
ISCC sought to build a rich understanding of the influence of the project’s interventions. The team thus chose to focus on qualitative methods as part of the evaluation. A variety of data collection approaches and research instruments were used including video recordings of class or studio sessions (part of the routine process of recording design sessions); questionnaires; interviews and focus groups; as well as blogs and related materials produced by students.
3 Baseline activity and how it was used

3.1 What is a baseline?
A baseline study involves gathering data before a project implements any changes. The intention is to describe a set of characteristics at a particular time or under a given set of conditions, in other words to establish a ‘base line’. If the project has specific aims and objectives, the data required for the baseline will be determined from these. If the aims are less well defined, it will be more difficult to identify the kinds of baseline data that would be useful, and it may be necessary to collect a broader range of data or contextual information associated with the aims of the project.

Baseline studies can be used in various ways:
- To help identify developments that would meet the needs of the context or needs expressed by stakeholders.
- To review stakeholders perceptions of existing practice.
- To identify whether or not existing practice achieves what is intended.
- To provide a starting point for envisioning developments (with stakeholders).
- To ensure the project is aware of factors within the current context or existing practices that might affect any planned developments.
- To help identify potential enablers and barriers to change.
- To check that developments undertaken elsewhere inform any planned for the project.
- To enable impact to be assessed by providing data that can be compared with a similar set collected later in the project.
- To enable other institutions to match their situation with that of a given project, to help identify whether the project’s developments could be appropriate in their institution.

Essentially, baselining is about scoping the wider context, investigating the local position, and thus checking that the context surrounding a project is understood. From this, potential challenges may be identified that could be addressed as part of a project, or acknowledged as possible risks.

The traditional view would be that by describing the current position, the baseline can “provide a sound basis on which the success of the project could later be evaluated” (Cascade). However, a baseline study can also be seen as the start of the essential project management requirement “to be aware of all factors which may impact positively or negatively on the effectiveness of the project” (KUBE).

Below are examples of how different Curriculum Delivery projects made effective use of the baseline stage, concluding with a project that demonstrates how baseline data can be incorporated in final reporting to describe the full project journey.

3.2 Identifying the current context
MAC approached the baselining activity by asking, “What is the current position?” The MAC baselining process included gathering staff and student views via a staff
perceptions of feedback questionnaire and a student perceptions of feedback questionnaire. These also relate to the part of the evaluation plan that aimed to define stakeholders’ views regarding key project terms, including: Student-centred, Reflection, Action on feedback, Simple online technologies, Transfer of eReflect, Feedback, Assessment. Student perceptions of these terms were reported in this transcript from an e-Reflect Student Focus Group. There is also a report on Staff views on feedback.

To check that the baseline did indeed identify the context, and thereby to ensure the baseline informed the development of the project, the following sub-questions were addressed:

- Are the reviews of current practice, understanding of the challenge and planning complete and realistic?
- Is baseline data related to staff and student involvement with feedback available and sufficient?
- Do we know enough about what is being done in other academic Schools within the University and/or at other institutions?

Any project undertaking a baseline designed to identify the current context, could benefit by adapting and applying these checking questions to their own baseline data.

3.3 Identifying existing practice

For KUBE, baselining activity concentrated on gaining information about existing practice within the delivery of HE Business courses at Kingston College, as well as establishing baseline evidence. Information was gained from internal and external audit documentation, discussions with key members of the HE Business management team, as well as observation of learner activity in lectures and seminars.

Central to the baselining process was a ‘Visioneering day’ that set out to explore alternative, innovative approaches to curriculum delivery. This away day involved module leaders and the eLearning team. There was discussion of eLearning tools such as wikis, podcasts, online quizzes, discussion fora, drag and drop activities, animated slideshows, and screen cast tools. This was supported by a purpose made show reel that demonstrated ways of using such tools in teaching and learning. The final activity of the day focused on a board game, developed specifically for KUBE called Curriculopoly. This was used to initiate discussion, and prompt freethinking while staff started to apply some of the tools they had been introduced to earlier. The day finished with a period of reflection when individual team members were asked to indicate which tools they would be using with their students in the new blended approach.

3.4 Mapping the landscape

The over-arching objective of the ESCAPE project was to improve the educational effectiveness and resource efficiency of assessment practices. ESCAPE thus undertook baseline activity that involved mapping the current assessment landscape within the two schools they were working with, along with capturing the details of module assessment via case studies. To avoid disturbing module teams, data was derived from module documentation. The results of the baseline study were
presented graphically to demonstrate the profile of different assessment types (low or formative, medium and high stakes) across the academic year. The team used a two dimensional grid with level of study along one axis, and relative percentage of course work to exam work on the other. The instrument used to do this is described in the Mapping the assessment landscape video on the Design Studio. The resulting maps were used to stimulate discussion about whether the ‘observed’ patterns in assessment were aligned with the learning that course teams wanted to encourage in their students. This approach could also be used to review change in assessment patterns by revisiting the profile of assessment within modules or courses after a process of change.

3.5 A first set of evaluation data

The Cascade baseline followed the same structure as the project Evaluation Plan, and addressed the five focus areas for the project. (These were online assignment handling, VLE support for courses, online delivery of generic content, course design, and online enrolment and payment.) The goal of the baseline was thus to provide a sound basis from which to later evaluate the success of the project. The project evaluator produced a Baseline Report in June 2010. While the Cascade Evaluation Report summarised the evaluation findings and compared the baseline to data collected later on in the project.

3.6 Informing developments and describing the starting point

eBiolabs conducted a major baselining study to identify and review how first-year laboratory bioscience was delivered within the School of Biochemistry, and determine stakeholders attitudes to this approach. As well as looking at how the syllabus was delivered, the team wanted to understand why practicals were delivered as they were. The baseline study also aimed to identify any barriers to change. The eBiolabs team gathered data for the baseline by engaging with a wide range of stakeholders, including academic staff (by direct consultation), laboratory demonstrators (via interviews), technicians, and fundamentally students undertaking the practicals (via questionnaires and informal discussion). There was also recognition of the role of the wider community, such as other HEIs, the HEA Subject Centres and employers.

Clearly, understanding the reasons why particular delivery approaches were used would be challenging. Indeed, even though members of the team worked within the School of Biochemistry, and were part of the local academic culture, uncovering the history of why the practicals were delivered in the way they were, was not always possible. Nonetheless, valuable baseline data was collected and this provided context to inform the development and design of the eBiolabs system. Collecting stakeholders’ views helped to highlight barriers that may have needed addressing as the project progressed. In addition, data collected from students provided a baseline to later compare against.

3.7 Reporting on the journey

The DUCKLING team collected baseline data about current processes and practices in taught postgraduate courses using a range of data collection methods including student online questionnaires, semi-structured student interviews, analysis of student progression data, informal meetings and discussion with members of the programme
team, as well as semi-structured interviews with employers. The findings from the baseline are presented along with an overview of the technology-enhancements that were made to the curricula, and a summary of the effect of the different technologies relative to the challenges identified during the baseline. These exemplar reports of curriculum delivery in Psychology and Education thus outline the full journey from baseline to identification of challenges to curriculum changes to indicators of impact. They demonstrate how the project team used the baseline data to identify challenges, worked with the course teams to develop the technology enhancements to the curriculum and finally reviewed progress or impact relative to the original challenges.
4 Data collection techniques

Many of the traditional social science data collection methods were made use of including focus groups, interviews, observation and questionnaires. Some of these were supplemented through the use of technology, such as online surveys and video interviews that were later compiled and made available on the web. All projects were given a Flip™ camera at the start of programme. Many made use of these to capture stakeholders' views, collect other evidence, or to reflect on progress. Some projects also made use of existing data, for example see ‘Making use of micro and macro data sources’. The more unusual methods included time motion studies, used to forecast efficiency savings, and cognitive mapping. A number of projects also who found innovate ways of engaging students in the evaluation process.

4.1 Cognitive mapping

DUCKLING used cognitive mapping for interviews with students involved in the Second Life and e-book reader studies as a way of triangulating responses from surveys. This technique was used to help identify changes in learning behaviour of individual students, but also to distinguish potential causes of any change. The cognitive mapping method is based on the rationale that “people make sense of their lives and situations by constructing, elaborating, revisiting and re-revising a system of interconnected concepts (more formally called ‘constructs’)” (Bryson et al, 2004)\(^{19}\).

Cognitive mapping was used to capture causal maps of students’ perceptions of using e-book readers. The DUCKLING team refers to Bryson et al’s (2004) description of a causal map as “a word-and-arrow diagram in which ideas and actions are causally linked with one another through the use of arrows. The arrows indicate how one idea or action leads to another.” The team created 12 causal maps using Decision Explorer software\(^{20}\). An example causal map is available from an interview with an Education student regarding his use of the e-book reader.

Decision Explorer was also used to undertake ‘Domain’ and ‘Central’ analyses of the maps. The former calculates the number of entry and exit arrow points from each node, which is used as an indicator of the richness of meaning of nodes. The node with the highest score is the “nub of the issue” for that map (Bryson et al, 2004). Alternatively, Central analysis looks at the centrality of a node, with a higher score indicating the node is of structural significance for that map. These two forms of analysis identify the “most important or ‘busiest’ concepts of each map”, which DUCKLING then compared with the themes developed from the Second Life and e-book reader surveys.

\(^{20}\) Decision Explorer is available from http://www.banxia.com/demain.html
4.2 Focus groups

MAC used focus groups, one of which is reported in this transcript of an e-Reflect Student Focus Group where students discussed key terms for the MAC project as well as their views on the e-Reflect feedback process.

KUBE used a long-term student focus group, with eight students who met on four occasions to assess both the pedagogic models and the learning materials themselves. Student feedback was often captured on either audio or video, some of this feedback has been compiled as a video on the KUBE project website. One of the meetings also looked at impact of the KUBE materials. In another, Students played their own version of Curriculopoly to facilitate discussion on how the KUBE offerings could be improved.

4.3 Informal discussions

All placement students discussed the impact of MoRSE on their placement with their academic tutor and industrial supervisor. Most students took part in a discussion of their placement experiences and how MoRSE had affected this (January 2010). Two short video interviews were prepared and a full audio recording of the 90 minute meeting. Discussions were also held with students and industrial supervisors during the final placement visit to evaluate the operation and impact of the project.

4.4 Interviews

ISCC undertook a small number of semi-structured interviews with students immediately following crit sessions that had made use of the project’s information spaces technology. The interviews addressed students’ reactions to the information spaces and how they were used. An outline interview schedule was developed that included questions on how students felt in a crit session; attitudes to the technology and opinions about its usefulness; conduct in the sessions; as well as activities beforehand and afterwards (see Appendix B of the ISCC Final Report). Notes were taken during the interviews. These were analysed iteratively, as described for the analysis of video recordings, with common themes from across transcripts being identified and highlighted.

Springboard TV conducted one-on-one video interviews with learners. These served to introduce learners to the artificial process of being “on camera”, but also provided learners with a compelling record of their thoughts, feelings and aspirations of their course. Learners could then revisit the interview at the end of their programme to gauge the distance they had travelled during the course. The value of video interviews is discussed further below (see ‘Evidence of impact – the value of video’).

4.5 Measures of time (effort)

Cascade combined a number of data collection techniques to review time spent on IT support and administration handling time. The first was to extract historical baseline data from existing data held within the Department that detailed the amount of time spent providing IT support to students and staff in their use of the old online submission system over the previous two years. IT support time was then tracked
during pilot studies of the new online assignment-handling system. The findings were checked with staff who were able to set the findings in the context of previous experience. (Demonstrating the importance of multiple sources of data.) Finally, time motion studies were used to compare administration-handling time using a paper-based system, the legacy system and the new online assignment handling system. The steps involved in the assignment handling and extension approval processes were identified, and the time used for each system compared. The data was drawn from historical data and observed timings of administrators completing the tasks.

4.6 Questionnaires
MoRSE applied Tailored Design Method (Dillman, 200021) to the development and administration of questionnaires. The first of these was a Student baseline questionnaire that was intended to identify what access students had to mobile technology while on placement and fieldtrips. An overview presentation of the findings was given to the project Steering Group22.

ESCAPE used pre and post implementation student assessment surveys. These were intended to capture the student perspective and impact of the re-engineered assessments on students. Students were invited to complete the electronic surveys via their module website, after completing the module. The student assessment surveys were conducted using the Assessment Experience Questionnaire (AEQ). The development of the AEQ is described by Gibbs & Simpson (2004)23, while the AEQ itself is available from the FAST archive site24.

ISCC also drew on other work in developing their approach to data collection. This included the Creativity Support Index (CSI), which is an instrument intended to help developers understand the value of ‘creativity support tools’ (Carroll et al, 2009)25. The CSI framework involves rating support tools according to: Exploration, Collaboration, Enjoyment, Results worth effort, Immersion, and Expressiveness. One pilot, or case, within ISCC developed a questionnaire based on the CSI. This was intended to investigate the extent that using the project’s information spaces supported collaborative creative activity in student groups. The questionnaire was delivered online in Moodle, and was completed by students during class. (See Case account for Year 2 at City University for the full questionnaire and findings).

21 Social Exchange Theory underpins TDM, which aims to maximise response rates. The theory attempts to explain why people do things for others and its principles can be applied to conducting many types of surveys. See: http://www.sesrc.wsu.edu/sesrcsite/methods/tdm.html
24 FAST project: Assessment Experience Questionnaire (AEQ) http://www.open.ac.uk/fast/Tools/AEQTools.htm
A number of projects issued student questionnaires at multiple time points. For example, KUBE issued all-student questionnaires at three time points. The first two were web-based, using Survey Monkey. The final questionnaire was paper-based and was distributed and collected during the exam period. This approach was used to ensure maximum coverage and completion. eBiolabs used pre and post implementation paper questionnaires with students. Unlike others, eBiolabs used an optical character recognition system to automatically mark and process paper-based questionnaires. This kind of automatic collation of questionnaire data can be especially useful for reducing processing time where there is a large population. eBiolabs had cohorts of 200 and 240 students, with return rates for questionnaires that were issued in labs of around 83%. For eBiolabs, issuing paper questionnaires to students during class time resulted in high return rates; where this was not appropriate, projects used various web-based options. For example, Atelier-D developed questionnaires using GoogleDoc Survey forms, one such survey explored students’ experiences of using the OpenDesignStudio.

The surveys developed by DUCKLING related to the technologies that were introduced to enhance delivery of work-based postgraduate distance learning programmes in Psychology and Education. They included an E-reader Survey, a Podcast Feedback Survey and a Second Life Survey. These were used in conjunction with semi-structured interviews and cognitive mapping interviews to investigate learners’ experiences of learning using these technologies.

4.7 Students as agents of change and researchers

Baseline evaluation findings from Springboard TV demonstrated that learners acknowledged their low motivation and skill levels, yet they also showed a real appetite for what they perceived as the benefits of the project. The Springboard TV team thus set out to use students as ‘agents of change’, by talking and listening to them, and involving them in the process of change. This included informal discussions and discussion at tutorials that highlighted the need for more intensive skills development to address concerns expressed by particular student groups. This led to amendments to the curriculum model. This was paired with focus groups as an additional means of gathering views from learners, and staff.

For Integrate the approach of employing students as change agents was central. A full range of resources relating to students as change agents is available on the Design Studio.

MAC actively sought engagement with students in the School of Life Sciences, and benefited from two very keen students who were engaged as researchers. These students not only served on the Project Steering Group but also liaised with the wider body of students in the School. eBiolabs engaged recent graduates as researchers and found this particularly effective as they were seen as peers by students.
5 Approaches to analysis

Some projects did not report in detail how they had analysed their baseline and evaluation data. While projects that had employed more innovative approaches to data collection generally did provide some details. For example, DUCKLING gave an overview of how they analysed their cognitive maps (see ‘Cognitive Mapping’) and Cascade described the process for efficiency forecasting (see ‘Measures of time (effort)’).

No specific mention was made of applying statistical analysis software, although many reports demonstrated the use of descriptive statistics, and Social Network Analysis was trialed. It seems likely that for quantitative data, the approach of compiling data from surveys and other sources into one or more spreadsheets followed by the use of descriptive statistics was the norm.

5.1 Qualitative analysis

In relation to qualitative data, DUCKLING compiled the data from semi-structured interviews, student contributions via Blackboard discussion forums and Wimba Voice Boards, and data from the student baseline and technology-related surveys. The data was then coded using data-driven coding and thematic analysis was undertaken to identify categories and themes (Boyatzis, 199826; Joffe & Yardley, 200427).

The ISCC team drew on the work of Heath et al (2010)28 in developing their approach to video analysis. For two of the ISCC trials, large numbers of students were involved, more than 100 in one case. As video material was captured as part of the routine process of recording design sessions, the project collected a substantial quantity of video data (well over 100 hours). Detailed transcription and analysis of all video data was not feasible. Thus the team undertook an initial broad review of the data, identifying potentially interesting themes and lines of enquiry by comparing across different video recordings. A subset of videos was selected for more detailed analysis against the emerging themes. From these, excerpts that related to particular themes were extracted and transcribed for more detailed analysis. Thus, as with DUCKLING, the analysis was thematic and derived iteratively from the data itself, being informed by a broad set of concerns and themes rather than using a predefined set of codes. ISCC provide a listing of the concerns and themes that emerged from the analysis of the video recordings in Appendix A of the ISCC Final Report.

5.2 Case studies

Case studies are an in-depth investigation of an individual, group, or event, using a systematic process for collecting data, analysing the resultant information, and reporting the results. Thus, while case studies can be described as a methodological

approach, they are included in the Analysis Section as many of the Curriculum Delivery projects reported their findings in the form of case studies even though they adopted different evaluation approaches. Within the programme, a wealth of case studies was produced. These are organised on the Design Studio according to:

- The main challenge, issue or rationale for the curriculum intervention, such as employability, learner attendance and engagement, recruitment, and staff development.
- Discipline or subject area.
- Technologies used, such as e-portfolios, mobile technologies and Virtual Learning Environments (VLE).
- Pedagogic approach, such as work-based learning, enhancing assessment and feedback, laboratory and practical learning.

5.3 Cost benefit analysis

The Making the New Diploma a Success project utilised the JISC infoNet Impact Calculator to evaluate efficiency gains from the project. While the Impact Calculator was designed to demonstrate the impact of records and information management initiatives, the team adapted it to review the benefits arising from the eME Student Portal. Four metrics were identified (License costs; Staff time to issue timetables and EMA/attendance data; Staffing to administrate/develop system; Print costs for timetables and EMA/attendance data). The impact calculator was then used to record benefits against each of these, and demonstrate the potential benefits over time. The potential cumulative monetary impact was found to be significant and is show in full in the eME Cost Benefit Analysis report.

DUCKLING also reported on a cost benefit analysis in relation to the technologies applied during the project (podcasting, e-book readers, Second Life, and Wimba voice board). The DUCKLING Final Report (see Appendix 2) includes an overview table that lists items to include as Direct and Indirect Costs pertaining to each technology, as well as the Benefits/Impact of each found by DUCKLING. The report also details the financial costs per student of e-book readers compared to paper delivery (see Table 17). The team also developed a simple Cost-Impact Matrix to highlight the value of considering the relationship between the cost of technology enhanced curriculum development relative to impact.

5.4 Social network analysis

Data logs generated from student activity and interactions within Atelier-D’s OpenDesignStudio were used to track the extent of student activity over time, and to map this to course tasks. The logs were also analysed using Gephi, a social network analysis (SNA) tool, to gain a deeper understanding of user interactions and behaviour within the design community. Figure 3 shows an example of a social network diagram from Atelier-D’s final report, which demonstrates different user’s activity within a network of users.

30 Gephi is an interactive visualisation and exploration tool that can be used to explore networks and complex systems. It is free and open-source. http://gephi.org/
Atelier-D describe this as the nodes representing different users and the arrows indicating the extent of comments each user makes upon another user’s images. The thicker the arrow the higher the number of comments, and larger nodes indicate users who made more comments. While the team drew no conclusions from this during the Atelier-D project, they will be further investigating the use of SNA to explore patterns of user behaviour and possibly network patterns within design communities. SNA is not an approach that will be adopted by many projects planning evaluations, although with the availability of free tools, such as Gephi, it is becoming more accessible.

5.5 Word Clouds

Wordle31 was used by projects to identify the key terms in qualitative data, such as that derived from responses to open survey questions. Atelier-D asked students to ‘Write five words that describe your experience or feelings of using the ning site’. The responses were processed through Wordle, and the team found this useful for revealing common perceptions and values. Another example was the use of Wordle with students’ responses to the question “What would have helped the assessment to enhance learning further?” Figure 4 shows how clearly students feel coursework and feedback are part of the assessment process. While this is not a systematic analysis tool, it can be useful for highlighting key messages in an engaging way.

31 Wordle generates ‘word clouds’ from text provided by users. http://www.wordle.net/
Figure 4 – Example of a word cloud produced using Wordle, using text from students’ responses to “What would have helped the assessment to enhance learning further?”
6 Lessons learned

This section relates some of the insights projects gained into different aspects of the evaluation process. This is not a systematic review of evaluation lessons learned across the programme; rather it highlights methods and activities particular to the Curriculum Delivery projects that others may benefit from adopting in future.

6.1 Dissemination can lead to further success

The Springboard TV Project Manager facilitated a 'show and tell' at the local RSC annual exhibition. The project was well received, so much so that several institutions enquired as to the possibility of launching their own equivalent channel using Springboard’s framework and expertise. This offered the opportunity to evaluate the Springboard TV approach in other contexts.

6.2 Evidence of impact – the value of video

The MAC evaluation concluded that using the MAC process could lead to tangible benefits to students as they try to take on board feedback from initial pieces of coursework, in order to do better in subsequent assignments. Within the evaluation, evidence was gathered from students via interviews. These were videoed, and later edited to form a compilation of student views. The kinds of questions asked included:

- Tell us if using e-Reflect has helped you?
- What if anything irritated you, or didn’t work so well? What could be improved?
- Tell us about your learning journal. Why is it important to you?

While the quotes from students reported by the team in the final MAC report provide valuable evidence, the richness of video adds considerably to this. For example, one student describes how the feedback from e-Reflect suggested he speak to the module leader:

“I wouldn't normally have thought to do this and it helped. He gave me ways I could improve and suggested a different way of approaching some of the subject matter. It has helped I think because since then my marks have shot up.”

Watching the student, however, really brings this and other student quotes to life. (See ‘How does e-Reflect help?’ at time point 2:14.)

The Making the New Diploma a Success project also made use of video interviews; their evaluation provides another example of the power of video. In response to the question “What tools have you used in eMe that you have found useful?” the Course Tutor on the Higher and Advanced Diploma courses describes how PDP has helped her to track learner progress and enhanced communication both with her students and amongst the course team. The video really demonstrates the enthusiasm of this tutor in a way that would be difficult to convey via text. (See time point 0:16.) This project also incorporated videos of students’ views in their case studies. For example, the Planning for Success case study includes links to student videos.
As part of the programme, a number of projects took part in an online conferencing session entitled “Using video to capture reflection and evidence”. The recording of the session, resources associated with it, and a listing of tools and guidance notes on analysing video data are collated on the Design Studio.

6.3 Gathering feedback from students – issues and tips

Several project teams noted how difficult it is to obtain consistent and meaningful feedback and input from students. For example, KUBE had planned to use a pre-induction social networking site as the means of delivering a comprehensive survey of student technology use to students before they started the BABM/HND program. However, as there were technical issues with the platform, Survey monkey was used instead. Invites containing a link to the survey were sent to all new students everyday. These also included the opportunity to enter a prize draw for an iPod touch and ePC after completing the survey. This incentive-based persistent email campaign finally yielded a good return from the students. Various other approaches to gain student feedback were used as part of KUBE. The team recommended encouraging feedback, then being prepared to listen to and act on student opinions and views so that students do not feel they are simply research material.

Despite the MAC team’s best efforts it proved impossible to gather significant feedback from those students who did not engage with MAC. (Only a small proportion of these students completed any of the evaluation questionnaires.) It was thus difficult to find out the basis of their lack of engagement. MAC did gain detailed feedback from students via recorded interviews, yet all of these students had volunteered to do so in response to an email request. The team acknowledged that the interview sample could well be biased towards the more proactive students who were willing to engage. Yet none of the students who were interviewed were “shy about providing negative feedback about the process”. The team looked at the responses from individuals according to their final degree classification and found no obvious difference in overall view of e-Reflect between the higher and lower class groups.

eBiolabs took the approach of contracting a recent bioscience graduate to gather interview data from demonstrators, most of whom were PhD students and recent bioscience graduates themselves. The team felt that using a similarly aged, externally employed person to undertake interviews meant demonstrators gave more candid, uninhibited answers. Another tip was to give them tea and biscuits.

6.4 Measuring time might be worth the effort

The use of historical data and time motion studies to evaluate time spent on administration and IT support tasks meant that the Cascade project was able to “forecast savings equivalent to over 38 weeks of productive admin time a year”. This was clearly a major benefit to the project who noted the “efficiency savings, and our ability to quantify them, have been useful when we have needed to make the case to fully embed and sustain these services going forward”. While Cascade had the advantage of having access to credible historical data, their evaluation also made use of relatively simple techniques to demonstrate potential impact. The project demonstrated that in some circumstances there are options for measuring staff time that do not in themselves require significant resource.
6.5 **Reflection – the value of blogs**

The ESCAPE team was particularly active in reflecting on the work of the project via the ESCAPE blog. The team felt this regular reflection complemented the more traditional end-of-activity evaluation. There are a number of [evaluation specific posts on the ESCAPE blog](http://www.nesta.org.uk/blogs/assets/blog_entries/where_is_the_evidence). The team member responsible for evaluation of **Making the New Diploma a Success** also recorded her [experiences of the evaluation process on a blog](http://www.nesta.org.uk/blogs/assets/blog_entries/where_is_the_evidence).

6.6 **The baseline process – starting to engage stakeholders**

The KUBE team highlighted how it is crucial for key stakeholders to understand and engage with their part of the project. For KUBE, the greatest impact on awareness was found in modules where staff embraced the project aims and thereby transferred their enthusiasm to students. Engaging stakeholders had started with the baseline process, when the KUBE project manager spent many hours talking to teachers to gain a better understanding of the problems they faced, as well as their relationships with each other and their students. The project manager carried out observations in the classroom followed by discussions about how things went. Clearly, this required sensitive handling and was a key part of the process of gaining lecturer buy-in. The KUBE team felt that without it there “would be little chance of successfully implementing the changes”. By taking this approach and adopting a role of problem solving, KUBE won the confidence of most of the teaching team they had targeted as potential innovators.

7 **Closing comments**

In the introduction, this report considered why the Transforming Curriculum Delivery Through Technology Programme included a strong evaluation component within the funded projects. It was suggested that the main driver for evaluation was to learn lessons from within the programme that could be evidenced and shared outside the programme. This fits well with a wider context of striving for more evidence-based practice.

While projects within the programme may not have applied the strict levels of rigour associated with randomised controlled trials, there are many instances of effective evaluation, some more rigorous than others, some more innovative, some with evidence from a larger population, some with more in-depth evidence. Furthermore, the programme’s approach of supporting projects in self-evaluation has the potential to both provide evidence of what does and what does not work, but also to raise evaluation capacity within the sector, and hence improve future evidence generation.

8 Resources

8.1 References

Ooms, A. (2009) *Presentation to MORSE Steering Group Meeting 17th July 2009*
http://www.slideshare.net/morse1/morse-project-presentation

London: Sage Publications Ltd.

http://www.nesta.org.uk/blogs/assets/blog_entries/where_is_the_evidence

https://uhra.herts.ac.uk/dspace/handle/2299/4331

The Appreciative Inquiry Commons
http://appreciativeinquiry.case.edu/

8.2 Tools and software

Decision explorer

FAST project: Assessment Experience Questionnaire (AEQ)

Gephi is an interactive visualisation and exploration tool that can be used to explore networks and complex systems. It is free and open-source.

JISC infoNet’s Records and Information Management Impact Calculator.

Wordle is a free online tool that generates “word clouds” from text provided by users.